DataCite

CONNECTING RESEARCH, ADVANCING KNOWLEDGE

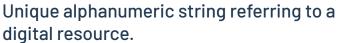
Advancing Citations, Open Research, and FAIR Practices for the Academic Community and Beyond: The Essential Role of Digital Object Identifiers (DOIs)

Mohamad Mostafa

Regional Engagement Specialist: Middle East & Asia mohamad.mostafa@datacite.org November 23, 2023

"2nd Research Management & Administration Symposium 2023, 23 – 24 November 2023, Xiamen University Malaysia, Sepang, Selangor, Malaysia"

<u>@momoostafa</u> <u>@datacite</u>


Persistent identifiers (PIDs)

PIDs

What is a persistent identifier (PID)?

https://doi.org/10.34848/GJ06SY

https://research-data.urosario.edu.c o/dataset.xhtml?persistentId=doi:10. 34848/GJ06SY

Always points to the same resource (a metadata representation)

DOIs for research outputs and resourcesORCID iDs for researchershttps://doi.org/10.5281/https://orcid.org/zenodo.3630248https://orcid.org/

ROR IDs for research organizations https://ror.org/01y2jtd41

PID for places (research institutions) include ROR

/1\

https://ror.org/01y2jtd41

PIDs for things (research out outs and resources) include DOIs, handles, IGSN, ARK and more

https://doi.org/10.5061/dryad.708gr

PIDs for research organizations

🖹 https://ror.org/0331wa828 🛶----

Xiamen University Malaysia

ORGANIZATION TYPE

Education

OTHER NAMES

XMUM, Universiti Xiamen Malaysia

WEBSITE

http://www.xmu.edu.my/

RELATIONSHIPS

Parent Organization(s) Xiamen University

LOCATION

Sepang (GeoNames ID 1734821) Malaysia

OTHER IDENTIFIERS

GRID grid.503008.e ISNI 0000 0004 7423 0677 Wikidata Q55637988

DataCite DOIs

We are a global community that shares a common interest: to ensure that research outputs and resources are openly available and connected so that their reuse can advance knowledge across and between disciplines, now and in the future.

As a community, we make research more effective with metadata that connects research outputs and resources-**from samples and images to data and preprints**. We enable the creation and management of persistent identifiers (PIDs), integrate services to improve research workflows, and facilitate the discovery and reuse of research outputs and resources.

(October 2023)

DataCite

Strategic Initiatives It Takes a Village

In line with our mission and vision, DataCite also actively participates and leads various initiatives through collaboration with stakeholders in the community to make open science a reality.

- **Data metrics** We help further the adoption and implementation of responsible data metrics with, for example, the Make Data Count initiative.
- **Identifier registries** We support community-led registries of identifiers such as the Research Organization Registry (ROR).
- **Repository discovery** We contribute to the development of repository discovery initiatives such as re3data with collaboration and financial support.

https://makedatacount.org/

<u>https://ror.org/</u>

https://www.re3data.org/

Types of research outputs

DataCite DOIs are suitable for a wide range of research outputs:

1. Research datasets and collections, associated workflows, software, images, and models

2. Grey literature such as theses, dissertations, reports, unpublished conference papers, newsletters, preprint journal articles, technical standards, and specifications for which the institutional repository is the primary publication point.

Resource Types in DataCite Registry

Dataset	16,200,197
Physical Object	14,098,123
Text	11,966,471
Image	4,137,380
Other	2,396,391
Journal Article	1,125,328
Preprint	1,115,782
Collection	977,478
Software	451,102
Audiovisual	346,942
Interactive Resource	127,466

Dissertation	120,391
Report	115,543
Project	101,985
Conference Paper	87,841
🗌 Book	83,956
Sound	52,004
Book Chapter	34,323
🗌 Event	19,157
🔲 Data Paper	15,632
🗌 Model	14,638
U Workflow	5,931
Output Management	3,391
Plan	

Who we are

Data from: Towards robust evolutionary inference with integral projection models

Janeiro, M. J., University of St Andrews, University of Aveiro Coltman, D. W. Festa-Bianchet, M., University of Alberta Pelletier, F., University of Alberta Morrissey, M. B., University of St Andrews Publication date: December 3, 2021 Publisher: Dryad https://doi.org/10.5061/dryad.708gr

Citation

Janeiro, M. J. et al. (2021), Data from: Towards robust evolutionary inference with integral projection models, Dryad, Dataset, <u>https://doi.org/10.5061/dryad.708gr</u>

PIDs for research outputs

ETDs

Home • Theses and Dissertations • MS Theses • Theoretical Investigation ...

Theoretical Investigation of Monolayer C6N3 as Anode Material for Li-, Na-, and K-Ion Batteries

Files

Bushra Alharbi Thesis.pdf (1.01 MB) ▲ Bushra Alharbi - MS Thesis Result .pdf (460.48 KB) ▲ Final Approval Form – 183043, Bushra Alharbi, M.Sc. Thesis.pdf (131.39 KB)

Туре

Thesis

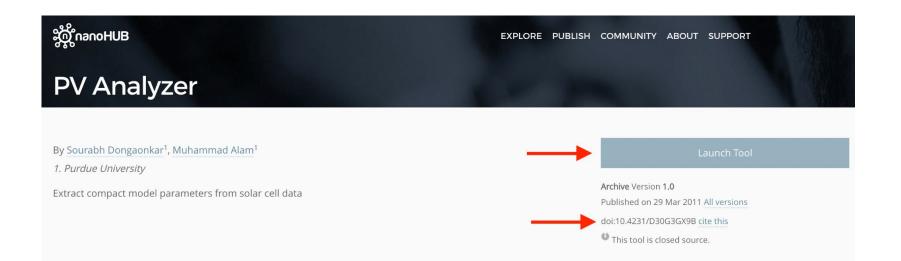
Authors

Alharbi, Bushra 🝺

Advisors Schwingenschlögl, Udo (10)

Committee Members

Abstract


Lithium-ion batteries (LIBs) are widely applied in a variety of applications such as mobile phones, laptop chargers, and electric vehicles. Thanks to a high energy density of about 120 to 220 Wh kg-1, LIBs are used for a long time, however, the present technology is unable to satisfy the increasing energy storage requirements. Therefore, increasing the energy density of LIBs to improve the performance is very important. Because of that the specific capacity and operation voltage of the anode and cathode materials determine the energy density, improving these two parameters is the key point. This can be achieved in two ways, one being the optimization of the electrode materials of existing LIBs, both cathode and anode, the other is the development of new battery systems to replace LIBs, potassium-ion batteries (KIBs) and sodium-ion batteries (NIBs) are examples of such new systems. In any case, the selection of the electrode materials is crucial.

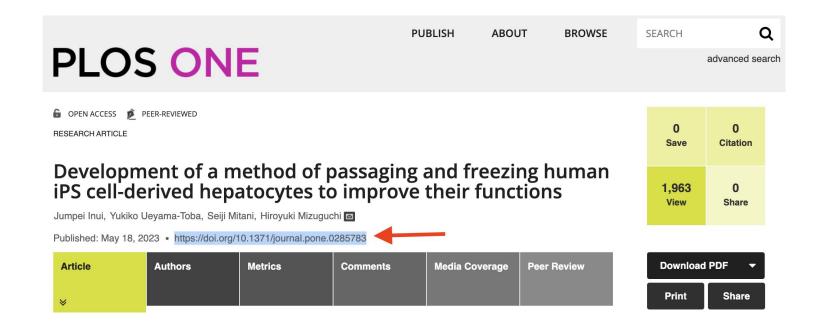
With a rapid development of two-dimensional (2D) materials, leading directly to an increase interest in exploring 2D materials in order to serve as possible electrode materials, based on their unique 2D structures, large conductivity, and most importantly, wide specific surface area. Among them lays graphene-like carbon-nitride materials with lightweight properties. These materials have collected spotlights in multiple fields that are concerned with energy harvesting and storage. The metallic monolayer C6N3 is a very recently discovered member in this family, which is chemically, mechanically, dy-namically, and thermodynamically stable through the first-principal calculations. In this work, we investigate the monolayer C6N3 performance as a potential and promising foundation for the anode material of LIBs/NIBs/KIBs. According to our theoretical investigation, the metallic monolayer C6N3 should be an effective anode material for the LIBs/NIBs/KIBs, which combines high specific capacity and low average opencircuit voltage.

DOI 10.25781/KAUST-RU5AJ

PIDs for research outputs Software


PIDs for research outputs

Theses


🖬 Samalut - Sheet IX-II S.W.

PIDs for research outputs Journal article

FAIR Principles and PIDs

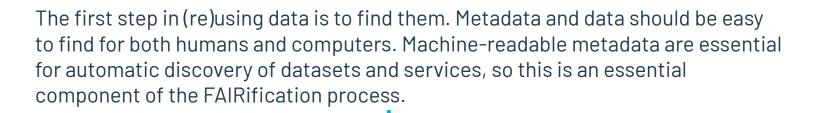
FAIR Principles

scientific data	View all journals Search $Q Log \ in$		
Explore content \checkmark About the journal \checkmark Publish with us \checkmark	Sign up for alerts 💭 RSS feed		
nature > scientific data > comment > article			
Open Access Published: 15 March 2016	Download PDF 🕹		
The FAIR Guiding Principles for scientific data management and stewardship	Associated Content		
<u>Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie</u>	Collection		
<u>Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, Jildau</u>	Scientific data		
Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J.G. Gray, Paul Groth, Carole Goble,	Collection		
Jeffrey S. Grethe, Barend Mons 🖂 + Show authors	Metadata quality		
Scientific Data 3, Article number: 160018 (2016) Cite this article	Sections References		
610k Accesses 6015 Citations 2128 Altmetric Metrics	Abstract		

Findable (Meta)data are assigned a globally unique and persistent identifier

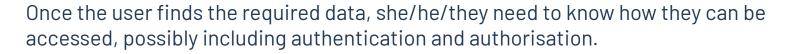
Accessible

(Meta)data are retrievable via an identifier using a standardized protocol Metadata are accessible, even when the data are no longer available


Interoperable

(Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.

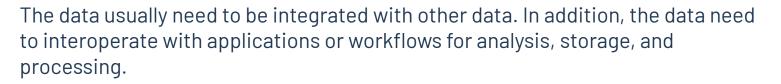
Reusable


(Meta)data are richly described with a plurality of accurate & relevant attributes

DataCite

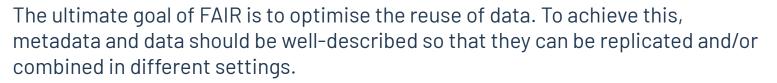
Findable (Meta)data are assigned a globally unique and persistent identifier

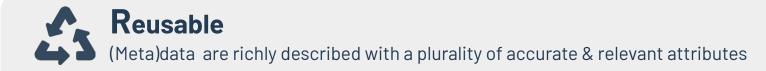
PID


PID

Accessible

(Meta)data are retrievable via an identifier using a standardized protocol Metadata are accessible, even when the data are no longer available


PID

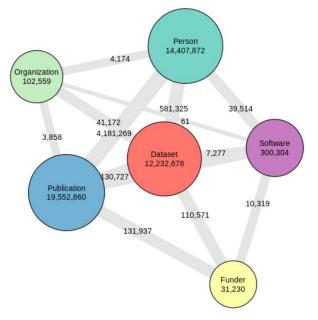

Interoperable

(Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.

DataCite

Connecting research

Find and connect research



Find the research with DataCite Commons commons.datacite.org

The PID Graph

Number of nodes and connections (August 2022)

Find a dataset

🌔 🔿 Sign In

Pages - Support

DataC	ite	Com	mons
-------	-----	-----	------

	comparati	ve analysis of	the S-locus and nuclear SSR	×Q
	📾 Works	🛣 People		
	2 Works			
2		e: a comp	0	cy-dependent selections of the selection
	Kato Shuri,	Teruyoshi Nag	gamitsu, Hiroyoshi Iwata, Yosh shed 2012 in DRYAD	ihiko Tsumura, Yuzuru Mukai,
1	frequency-o repeat (SSR	dependent sel) loci that seer	ection (NFDS) were evaluated med to be evolutionarily neuti	ucture of island populations a in Prunus lannesiana var. spec ral. Our observations of local n ty, but also various factors suc

License

Text

2012

Work Type

Dataset

CC0-1.0

Publication Year

Language

English

Registration Agency

Crossref DataCite

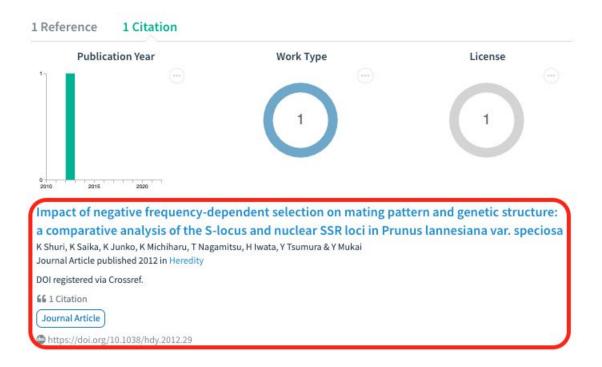
2	Data from: Impact of negative frequency-dependent selection on mating pattern and genetic structure: a comparative analysis of the S-locus and nuclear SSR loci in Prunus lannesiana var. speciosa Kato Shuri, Teruyoshi Nagamitsu, Hiroyoshi Iwata, Yoshihiko Tsumura, Yuzuru Mukai, K Michiharu, K Saika & K Junko Version 1 of Dataset published 2012 in DRYAD
 L L	Mating processes of local demes and spatial genetic structure of island populations at the self-incompatibility (S-) locus under negative frequency-dependent selection (NFDS) were evaluated in Prunus lannesiana var. speciosa in comparison with nuclear simple sequence repeat (SSR) loci that seemed to be evolutionarily neutral. Our observations of local mating patterns indicated that male-female pair fecundity was influenced by not only self-incompatibility, but also various factors such as kinship, pollen production and flowering synchrony. In spite of the mating bias caused by these factors, the NFDS effect on changes in allele frequencies from potential mates to mating pollen was detected at the S-locus but not at the SSR loci although the changes from adult to juvenile cohorts were not apparent at any loci. Genetic differentiation and isolation-by-distance over various spatial scales were smaller at the S-locus than at the
	SSR loci, as expected under the NFDS. All ele sharing distributions among the populations also had a unimodal pattern at the S-locus, indicating the NFDS effect except for alleles unique to individual populations probably due to isolation among islands, although this pattern was not exhibited by the SSR loci. Our results suggest that the NFDS at the S-locus has an impact on both the mating patterns and the genetic structure in the P. lannesiana populations studied.
	DOI registered April 17, 2012 via DataCite.

$\odot 0$

1

1

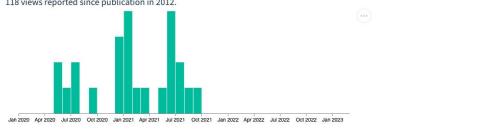
1


🖌 1 Citation 💿 103 Views 🛓 16 Downloads

Dataset English

https://doi.org/10.5061/dryad.7c425

Bring citations to the surface


Support recognition

Data from: Impact of negative frequency-dependent selection on mating pattern and genetic structure: a comparative analysis of the S-locus and nuclear SSR loci in Prunus lannesiana var. speciosa \odot https://doi.org/10.5061/dryad.7c425 ▲ 16 Downloads Description Registration Creators Kato Shuri Forestry and Forest Products Research Institute Teruyoshi Nagamitsu Forestry and Forest Products Research Institute Hiroyoshi Iwata University of Tokyo Yoshihiko Tsumura Forestry and Forest Products Research Institute Yuzuru Mukai Gifu Univ 118 Views 16 Downloads Kyoto Ur K Michiharu K Saika Tokyo In

Gunma

118 views reported since publication in 2012.

Add to ORCID Record

Download Metadata

Cite as

Shuri, K., Nagamitsu, T., Iwata, H., Tsumura, Y., Mukai, Y., Michiharu, K., Saika, K., & Junko, K. (2012). Data from: Impact of negative frequency-dependent selection on mating pattern and genetic structure: a comparative analysis of the S-locus and nuclear SSR loci in Prunus lannesiana var. speciosa (Version 1) [Data set]. Dryad.

https://doi.org/10.5061/DRYAD.7C425

APA

K Junko

Organizations - citations and use

World Agroforestry Centre https://ror.org/01kmz4383 2,915 29 262 1,116 Citations (?) Views 🕐 Downloads 🕐 Works Founded 1978 Links Other Identifiers Homepage GRID grid.435643.3 Wikipedia Crossref Funder ID 10.13039/501100015769 ISNI 000000099721350 Twitter Wikidata Q1362380

Geolocation

1° 14' 11.67" S36° 49' 08.4216" W

Kenya
Nonprofit
DataCite Consortium Organization

Image: A state of the state of

2,915 Works

DOIs for research outputs

Different **research outputs** should be **registered** with DOIs such as journal articles, samples, protocols, datasets, dissertations, software,

discoverable, accessible, citable, reusable

Retrieving DOI Metadata

DOI Citation Formatter

*

-

Paste your DOI:

10.1145/2783446.2783605

For example 10.1145/2783446.2783605

Select Formatting Style:

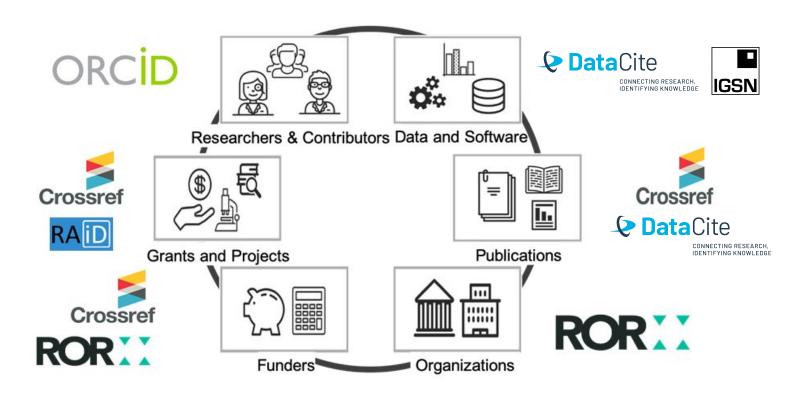
ара

Begin typing (e.g. Chicago or IEEE.) or use the drop down menu.

Select Language and Country:

en-US

Begin typing (e.g. en-GB for English, Great Britain) or use the drop down menu.


Format

Garza, K., Goble, C., Brooke, J., & Jay, C. (2015). Framing the community data system interface. In Proceedings of the 2015 British HCI Conference. British HCI 2015: 2015 British Human Computer Interaction Conference. ACM. https://doi.org/10.1145/2783446.2783605

https://citation.crosscite.org/

Persistent Identifier (PIDs)

Persistent Identifiers

Implementing PIDs in research workflows can enhance the visibility and accessibility of research outputs within the **Open Research** framework. This practice promotes more **transparency, collaboration and trust** in the research ecosystem.

Thank you! Questions?

CONNECTING RESEARCH, IDENTIFYING KNOWLEDGE

info@datacite.org

 \sum

pidforum.org

datacite.org blog.datacite.org

support.datacite.org support@datacite.org

@datacite

<u>DataCite</u>

 \triangleright

lin

<u>@datacite</u>